目錄
- 索引操作
- 簡單索引
- Numpy 式索引
- 使用 : 進行索引
- tf.gather
- tf.gather_nd
- tf.boolean_mask
- 切片操作
- 維度變換
- tf.reshape
- tf.transpose
- tf.expand_dims
- tf.squeeze
- Boardcasting
- 數(shù)學(xué)運算
- 加減乘除
- log exp
- pow sqrt
- 矩陣相乘 @
索引操作

簡單索引
索引 (index) 可以幫助我們快速的找到張量中的特定信息.
例子:
a = tf.reshape(tf.range(12), [2, 2, 3])
print(a)
print(a[0])
print(a[0][0])
輸出結(jié)果:
tf.Tensor(
[[[ 0 1 2]
[ 3 4 5]]
[[ 6 7 8]
[ 9 10 11]]], shape=(2, 2, 3), dtype=int32)
tf.Tensor(
[[0 1 2]
[3 4 5]], shape=(2, 3), dtype=int32)
tf.Tensor([0 1 2], shape=(3,), dtype=int32)
Numpy 式索引
我們也可以按照 numpy 的寫法來操作索引.
例子:
a = tf.reshape(tf.range(12), [2, 2, 3])
print(a)
print(a[0])
print(a[0, 0])
輸出結(jié)果:
tf.Tensor(
[[[ 0 1 2]
[ 3 4 5]]
[[ 6 7 8]
[ 9 10 11]]], shape=(2, 2, 3), dtype=int32)
tf.Tensor(
[[0 1 2]
[3 4 5]], shape=(2, 3), dtype=int32)
tf.Tensor([0 1 2], shape=(3,), dtype=int32)
使用 : 進行索引
例子:
c = tf.ones([4, 14, 14, 4])
print(c[0, :, :, :].shape)
print(c[0, 1, :, :].shape)
輸出結(jié)果:
(14, 14, 4)
(14, 4)
tf.gather
我們假設(shè)一個有 3 個餐館, 每個餐館有 8 種菜系, 128 道菜data: [resturants, cuisines, dishes]
.

例子:
data = tf.zeros([3, 8, 128])
g1 = tf.gather(data, axis=0, indices=[0, 2])
print(g1.shape)
g2 = tf.gather(data, axis=1, indices=[0, 1, 2, 3])
print(g2.shape)
輸出結(jié)果:
(2, 8, 128)
(3, 4, 128)
tf.gather_nd
例子:
g1 = tf.gather_nd(data, [0])
print(g1.shape)
g2 = tf.gather_nd(data, [0, 1])
print(g2.shape)
g3 = tf.gather_nd(data, [0, 1, 2])
print(g3.shape)
輸出結(jié)果:
(8, 128)
(128,)
()
tf.boolean_mask
格式:
tf.boolean_mask(
tensor, mask, axis=None, name='boolean_mask'
)
例子:
data = tf.zeros([3, 8, 128])
b1 = tf.boolean_mask(data, mask=[True, True, False])
print(b1.shape)
b2 = tf.boolean_mask(data, mask=[True, False, True, False, True, False, True, False], axis=1)
print(b2.shape)
輸出結(jié)果:
(2, 8, 128)
(3, 4, 128)
切片操作
借助切片技術(shù), 我們可以靈活的處理張量對象.

簡單切片
格式:
其中 start 為開始索引, end 為結(jié)束索引 (不包括)
例子:
tf.Tensor([0 1 2], shape=(3,), dtype=int32)
tf.Tensor([9], shape=(1,), dtype=int32)
tf.Tensor([0 1 2 3 4 5 6 7 8], shape=(9,), dtype=int32)
step 切片
格式:
tensor[start : end: step]
例子:
d = tf.range(6)
print(d[::-1]) # 實現(xiàn)倒序
print(d[::2]) # 步長為2
輸出結(jié)果:
tf.Tensor([5 4 3 2 1 0], shape=(6,), dtype=int32)
tf.Tensor([0 2 4], shape=(3,), dtype=int32)
維度變換

tf.reshape
tf.reshape 可以幫助我們進行維度轉(zhuǎn)換.
格式:
tf.reshape(
tensor, shape, name=None
)
參數(shù):
- tensor: 傳入的張量
- shape: 張量的形狀
- name: 數(shù)據(jù)名稱
例子:
a = tf.random.normal([3, 8, 128])
print(a.shape)
b = tf.reshape(a, [3, 1024])
print(b.shape)
c = tf.reshape(a, [3, -1])
print(c.shape)
輸出結(jié)果:
(3, 8, 128)
(3, 1024)
(3, 1024)
tf.transpose
格式:
tf.transpose(
a, perm=None, conjugate=False, name='transpose'
)
例子:
a = tf.random.normal([4, 3, 2, 1])
print(a.shape)
b = tf.transpose(a)
print(b.shape)
c = tf.transpose(a, perm=[0, 1, 3, 2])
print(c.shape)
輸出結(jié)果:
(4, 3, 2, 1)
(1, 2, 3, 4)
(4, 3, 1, 2)
tf.expand_dims
格式:
tf.expand_dims(
input, axis, name=None
)
參數(shù):
- input: 輸入
- axis: 操作的維度
- name: 數(shù)據(jù)名稱
例子:
a = tf.random.normal([4, 3, 2, 1])
print(a.shape)
b = tf.expand_dims(a, axis=0)
print(b.shape)
c = tf.expand_dims(a, axis=1)
print(c.shape)
d = tf.expand_dims(a, axis=-1)
print(d.shape)
輸出結(jié)果:
(4, 3, 2, 1)
(1, 4, 3, 2, 1)
(4, 1, 3, 2, 1)
(4, 3, 2, 1, 1)
tf.squeeze
tf.squeeze 可以幫助我們刪去所有維度為1 的維度.

格式:
tf.squeeze(
input, axis=None, name=None
)
參數(shù):
- input: 輸入
- axis: 操作的維度
- name: 數(shù)據(jù)名稱
例子:
a = tf.zeros([2, 1, 1, 3, 5])
s1 = tf.squeeze(a)
print(s1.shape)
s2 = tf.squeeze(a, axis=1)
print(s2.shape)
s3 = tf.squeeze(a, axis=2)
print(s3.shape)
輸出結(jié)果:
(2, 3, 5)
(2, 1, 3, 5)
(2, 1, 3, 5)
Boardcasting
廣播機制 (Boardcasting) 是一種張量復(fù)制的手段. Boardcasting 可以幫助我們擴張張量的形狀但無需實際復(fù)制數(shù)據(jù).

廣播機制允許我們在隱式情況下進行填充, 從而使得我們的代碼更加簡潔, 更有效率地使用內(nèi)存.
tf.boardcast_to
boardcast_to:
tf.broadcast_to(
input, shape, name=None
)
參數(shù):
- input: 輸入
- shape: 數(shù)據(jù)形狀
- name: 數(shù)據(jù)名稱
例子:
a = tf.broadcast_to(tf.random.normal([4, 1, 1, 1]), [4, 32, 32, 3])
print(a.shape)
b = tf.broadcast_to(tf.zeros([128, 1, 1, 1]), [128, 32, 32, 3])
print(b.shape)
輸出結(jié)果:
(4, 32, 32, 3)
(128, 32, 32, 3)
tf.tile
格式:
tf.tile(
input, multiples, name=None
)
參數(shù):
- input: 輸入
- multiples: 同一緯度上復(fù)制的次數(shù)
- name: 數(shù)據(jù)名稱
例子:
a = tf.zeros([4, 1, 1, 1])
print(a.shape)
b = tf.tile(a, [1, 32, 32, 3])
print(b.shape)
輸出結(jié)果:
(4, 1, 1, 1)
(4, 32, 32, 3)
注: boardcast_to 和 tile 的區(qū)別在于 boardcast_to 可以在不復(fù)制內(nèi)存的情況下自動擴張 tensor.
數(shù)學(xué)運算

加減乘除
例子:
# 定義張量
t1 = tf.ones([3, 3])
t2 = tf.fill([3, 3], 3.0)
# 加
add = t1 + t2
print(add)
# 減
minus = t1 - t2
print(minus)
# 乘
multiply = t1 * t2
print(multiply)
# 除
divide = t1 / t2
print(divide)
輸出結(jié)果:
tf.Tensor(
[[4. 4. 4.]
[4. 4. 4.]
[4. 4. 4.]], shape=(3, 3), dtype=float32)
tf.Tensor(
[[-2. -2. -2.]
[-2. -2. -2.]
[-2. -2. -2.]], shape=(3, 3), dtype=float32)
tf.Tensor(
[[3. 3. 3.]
[3. 3. 3.]
[3. 3. 3.]], shape=(3, 3), dtype=float32)
tf.Tensor(
[[0.33333334 0.33333334 0.33333334]
[0.33333334 0.33333334 0.33333334]
[0.33333334 0.33333334 0.33333334]], shape=(3, 3), dtype=float32)
log exp
例子:
# log
a = tf.fill([2], 100.0)
print(a)
b = tf.math.log(a) # 以e為底
print(b)
# exp
c = tf.ones([2])
print(c)
d = tf.exp(c)
print(d)
輸出結(jié)果:
tf.Tensor([100. 100.], shape=(2,), dtype=float32)
tf.Tensor([4.6051702 4.6051702], shape=(2,), dtype=float32)
tf.Tensor([1. 1.], shape=(2,), dtype=float32)
tf.Tensor([2.7182817 2.7182817], shape=(2,), dtype=float32)
pow sqrt
例子:
# 定義張量
a = tf.fill([2], 4.0)
print(a)
# pow
b = tf.pow(a, 2)
print(b)
# sqrt
c = tf.sqrt(a, 2)
print(c)
輸出結(jié)果:
tf.Tensor([4. 4.], shape=(2,), dtype=float32)
tf.Tensor([16. 16.], shape=(2,), dtype=float32)
tf.Tensor([2. 2.], shape=(2,), dtype=float32)
矩陣相乘 @
我們可以使用tf.matmul
或@
來實現(xiàn)矩陣相乘.

例子:
# 定義張量
a = tf.fill([2, 2], 2)
b = tf.fill([2, 2], 3)
# matmul
c = tf.matmul(a, b)
print(c)
# @
d = a@b
print(d)
輸出結(jié)果:
tf.Tensor(
[[12 12]
[12 12]], shape=(2, 2), dtype=int32)
tf.Tensor(
[[12 12]
[12 12]], shape=(2, 2), dtype=int32)
到此這篇關(guān)于一小時學(xué)會TensorFlow2之基本操作2實例代碼的文章就介紹到這了,更多相關(guān)TensorFlow2基本操作內(nèi)容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
您可能感興趣的文章:- 一小時學(xué)會TensorFlow2之基本操作1實例代碼
- 一小時學(xué)會TensorFlow2之全連接層